Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3)




Скачать 165.86 Kb.
НазваниеРис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3)
Дата публикации06.12.2013
Размер165.86 Kb.
ТипДокументы
shkolnie.ru > Информатика > Документы



Рис.1 Искусственный нейрон
Основу каждой НС составляют искусственные нейроны, то есть ячейка НС. Каждый нейрон характеризуется своим текущим состоянием. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке 1. Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который по физическому смыслу эквивалентен электрической проводимости.

Текущее состояние нейрона определяется, как взвешенная сумма его входов:

(1)

Выход нейрона есть функция его состояния:

y = f(s) (2)




^ Рис.2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3)
Нелинейная функция f называется активационной и может иметь различный вид, как показано на рисунке 2. Одной из наиболее распространеных является нелинейная функция с насыщением, так называемая логистическая функция или сигмоид (т.е. функция S-образного вида)[2]:

(3)

Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1]. Одно из ценных свойств сигмоидной функции – простое выражение для ее производной, применение которого будет рассмотрено в дальнейшем.

(4)

Следует отметить, что сигмоидная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.




^ Рис.3 Однослойный перцептрон
В качестве примера простейшей НС рассмотрим трехней­ронный перцептрон (рис.3), то есть такую сеть, нейроны которой имеют активационную функцию в виде единичного скачка* . На n входов поступают некие сигналы, проходящие по синапсам на 3 нейрона, образующие единственный слой этой НС и выдающие три выходных сигнала:

, j=1...3 (5)

Очевидно, что все весовые коэффициенты синапсов одного слоя нейронов можно свести в матрицу W, в которой каждый элемент wij задает величину i-ой синаптической связи j-ого нейрона. Таким образом, процесс, происходящий в НС, может быть записан в матричной форме:

Y=F(XW) (6)

где X и Y – соответственно входной и выходной сигнальные векторы, F( V) – активационная функция, применяемая поэлементно к компонентам вектора V.

Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется НС. Чем сложнее НС, тем масштабнее задачи, подвластные ей.

Очевидно, что процесс функционирования НС зависит от величин синаптических связей, поэтому, задавшись определенной структурой НС, разработчик сети должен найти оптимальные значения всех переменных весовых коэффициентов.

Этот этап называется обучением НС. На этапе обучения кроме параметра качества подбора весов важную роль играет время обучения. Как правило, эти два параметра связаны обратной зависимостью и их приходится выбирать на основе компромисса.

Обучение НС может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы НС формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы.

Алгоритмы обучения делятся на два больших класса: детерминистские и стохастические. В первом из них подстройка весов представляет собой жесткую последовательность действий, во втором – она производится на основе действий, подчиняющихся некоторому случайному процессу.

Развивая дальше вопрос о возможной классификации НС, важно отметить существование бинарных и аналоговых сетей. Первые из них оперируют с двоичными сигналами, и выход каждого нейрона может принимать только два значения: логический ноль ("заторможенное" состояние) и логическая единица ("возбужденное" состояние). К этому классу сетей относится и перцептрон, так как выходы его нейронов, формируемые функцией единичного скачка, равны либо 0, либо 1. В аналоговых сетях выходные значения нейронов спо­соб­ны принимать непрерывные значения, что могло бы иметь место после замены активационной функции нейронов перцептрона на сигмоид.




^ Рис.4 Двухслойный перцептрон
Сети также можно классифицировать по числу слоев. На рисунке 4 представлен двухслойный перцептрон, полученный из перцептрона с рисунка 3 путем добавления второго слоя, состоящего из двух нейронов..

Какие задачи может решать НС? Грубо говоря, работа всех сетей сводится к классификации (обоб­щению) входных сигналов, принадлежащих n-мерному гипер­про­странству, по некоторому числу классов. С матема­ти­ческой точ­ки зрения это происходит путем разбиения гипер­про­стран­ства ги­пер­плоскостями (запись для случая однослой­ного пер­цеп­тро­на)

, k=1...m (13)

Каждая полученная область является областью определения отдельного класса. Число таких классов для одной НС перцептронного типа не превышает 2m, где m – число выходов сети.

Функции, которые не реализуются однослойной сетью, называ­ют­ся линейно неразделимыми. Решение задач, подпадающих под это ог­ра­ничение, заключается в применении 2-х и более слойных сетей или се­тей с нелинейными синапсами, однако и тогда существует вероят­ность, что корректное разделение некоторых входных сигналов на классы невозможно.

Наконец, мы можем более подробно рассмотреть вопрос обучения НС, для начала – на примере перцептрона с рисунка 3.

Рассмотрим алгоритм обучения с учителем[2][4].

1. Проинициализировать элементы весовой матрицы (обычно небольшими случайными значениями).

2. Подать на входы один из входных векторов, которые сеть должна научиться различать, и вычислить ее выход.

3. Если выход правильный, перейти на шаг 4.

Иначе вычислить разницу между идеальным и полученным значениями выхода:



Модифицировать веса в соответствии с формулой:



где t и t+1 – номера соответственно текущей и следующей итераций;  – коэффициент скорости обучения, 0<Ј1; i – номер входа; j – номер нейрона в слое.

Очевидно, что если YI > Y весовые коэффициенты будут увеличены и тем самым уменьшат ошибку. В противном случае они будут уменьшены, и Y тоже уменьшится, приближаясь к YI.

4. Цикл с шага 2, пока сеть не перестанет ошибаться.

На втором шаге на разных итерациях поочередно в случайном порядке предъявляются все возможные входные вектора. К сожалению, нельзя заранее определить число итераций, которые потребуется выполнить, а в некоторых случаях и гарантировать полный успех.
^ Алгоритм обратного распространения

Одной из наиболее известных структур НС является полносвязная. Когда в сети только один слой, алгоритм ее обучения с учителем довольно очевиден, так как правильные выходные состояния нейронов единственного слоя заведомо известны, и подстройка синаптических связей идет в направлении, минимизирующем ошибку на выходе сети. По этому принципу строится, например, алгоритм обучения однослойного перцептрона[1]. В многослойных же сетях оптимальные выходные значения нейронов всех слоев, кроме последнего, как правило, не известны, и двух или более слойный перцептрон уже невозможно обучить, руководствуясь только величинами ошибок на выходах НС.

Распространение сигналов ошибки от выходов НС к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Этот алгоритм обучения НС получил название процедуры обратного распространения. Согласно методу наименьших квадратов, минимизируемой целевой функцией ошибки НС является величина:

(1)

где – реальное выходное состояние нейрона j выходного слоя N нейронной сети при подаче на ее входы p-го образа; djp – идеальное (желаемое) выходное состояние этого нейрона.

Суммирование ведется по всем нейронам выходного слоя и по всем обрабатываемым сетью образам. Минимизация ведется методом градиентного спуска, что означает подстройку весовых коэффициентов следующим образом:

(2)

Здесь wij – весовой коэффициент синаптической связи, соединяющей i-ый нейрон слоя n-1 с j-ым нейроном слоя n, – коэффициент скорости обучения, 0<<1.

Как показано в [2],

(3)

Здесь под yj, как и раньше, подразумевается выход нейрона j, а под sj – взвешенная сумма его входных сигналов, то есть аргумент активационной функции. Так как множитель dyj/dsj является производной этой функции по ее аргументу, из этого следует, что производная активационной функция должна быть определена на всей оси абсцисс. В связи с этим функция единичного скачка и прочие активационные функции с неоднородностями не подходят для рассматриваемых НС. В них применяются такие гладкие функции, как гиперболический тангенс или классический сигмоид с экспонентой. В случае гиперболического тангенса

(4)

Третий множитель sj/wij, очевидно, равен выходу нейрона предыдущего слоя yi(n-1).

Что касается первого множителя в (3), он легко раскладывается следующим образом[2]:

(5)

Здесь суммирование по k выполняется среди нейронов слоя n+1.

Введя новую переменную

(6)

мы получим рекурсивную формулу для расчетов величин j(n) слоя n из величин k(n+1) более старшего слоя n+1.

(7)

Для выходного же слоя

(8)

Теперь мы можем записать (2) в раскрытом виде:

(9)

Иногда для придания процессу коррекции весов некоторой инерционности, сглаживающей резкие скачки при перемещении по поверхности целевой функции, (9) дополняется значением изменения веса на предыдущей итерации

(10)

где – коэффициент инерционности, t – номер текущей итерации.

Таким образом, полный алгоритм обучения НС с помощью процедуры обратного распространения строится так:

1. Подать на входы сети один из возможных образов и в режиме обычного функционирования НС, когда сигналы распространяются от входов к выходам, рассчитать значения последних. Напомним, что

(11)

где M – число нейронов в слое n-1 с учетом нейрона с постоянным выходным состоянием +1, задающего смещение; yi(n-1)=xij(n) – i-ый вход нейрона j слоя n.

yj(n) = f(sj(n)), где f() – сигмоид (12)

yq(0)=Iq, (13)

где Iq – q-ая компонента вектора входного образа.

2. Рассчитать (N) для выходного слоя по формуле (8).

Рассчитать по формуле (9) или (10) изменения весов w(N) слоя N.

3. Рассчитать по формулам (7) и (9) (или (7) и (10)) соответственно (n) и w(n) для всех остальных слоев, n=N-1,...1.

4. Скорректировать все веса в НС

(14)

5. Если ошибка сети существенна, перейти на шаг 1. В противном случае – конец.




^ Рис.1 Диаграмма сигналов в сети при обучении по алгоритму обратного распространения
Сети на шаге 1 попеременно в случайном порядке предъявляются все тренировочные образы, чтобы сеть, образно говоря, не забывала одни по мере запоминания других. Алгоритм иллюстрируется рисунком 1.

Из выражения (9) следует, что когда выходное значение yi(n-1) стремится к нулю, эффективность обучения заметно снижается. При двоичных входных векторах в среднем половина весовых коэффициентов не будет коррек­тироваться[3], поэтому область возможных значений выходов нейронов [0,1] желательно сдвинуть в пределы [-0.5,+0.5], что достигается простыми модификациями логистических функций. Например, сигмоид с экспонентой преобразуется к виду

(15)

Рассматриваемая НС имеет несколько "узких мест". Во-первых, в процессе обучения может возникнуть ситуация, когда большие положительные или отрицательные значения весовых коэффициентов сместят рабочую точку на сигмоидах многих нейронов в область насыщения. Малые величины производной от логистической функции приведут к остановке обучения, что парализует НС. Во-вторых, применение метода градиентного спуска не гарантирует, что будет найден глобальный, а не локальный минимум целевой функции. Эта проблема связана еще с одной, а именно – с выбором величины скорости обучения. Доказательство сходимости обучения в процессе обратного распространения основано на производных, то есть приращения весов и, следовательно, скорость обучения должны быть бесконечно малыми, однако в этом случае обучение будет происходить неприемлемо медленно. С другой стороны, слишком большие коррекции весов могут привести к постоянной неустойчивости процесса обучения. Поэтому в качестве обычно выбирается число меньше 1, но не очень маленькое, например, 0.1, и оно, вообще говоря, может постепенно уменьшаться в процессе обучения. Кроме того, для исключения случайных попаданий в локальные минимумы иногда, после того как значения весовых коэффициентов застабилизируются, кратковременно сильно увеличивают, чтобы начать градиентный спуск из новой точки. Если повторение этой процедуры несколько раз приведет алгоритм в одно и то же состояние НС, можно более или менее уверенно сказать, что найден глобальный максимум, а не какой-то другой.
^ Нейронные сети: обучение без учителя

Главная черта, делающая обучение без учителя привлекательным, – это его "самостоятельность". Процесс обучения, как и в случае обучения с учителем, заключается в подстраивании весов синапсов. Очевидно, что подстройка синапсов может проводиться только на основании информации, доступной в нейроне, то есть его состояния и уже имеющихся весовых коэффициентов. Исходя из этого соображения и, что более важно, по аналогии с известными принципами самоорганизации нервных клеток[2], построены алгоритмы обучения Хебба.

Сигнальный метод обучения Хебба заключается в изменении весов по следующему правилу:

(1)

где yi(n-1) – выходное значение нейрона i слоя (n-1), yj(n) – выходное значение нейрона j слоя n; wij(t) и wij(t-1) – весовой коэффициент синапса, соединяющего эти нейроны, на итерациях t и t 1 соответственно;  – коэффициент скорости обучения. Здесь и далее, для общности, под n подразу­мевается произвольный слой сети. При обучении по данному методу усиливаются связи между возбужденными нейронами.

Существует также и дифференциальный метод обучения Хебба.

(2)

Здесь yi(n-1)(t) и yi(n-1)(t-1) – выходное значение нейрона i слоя n-1 соответственно на итерациях t и t-1; yj(n)(t) и yj(n)(t-1) – то же самое для нейрона j слоя n. Как видно из формулы (2), сильнее всего обучаются синапсы, соединяющие те нейроны, выходы которых наиболее динамично изменились в сторону увеличения.

Полный алгоритм обучения с применением вышеприведенных формул будет выглядеть так:

1. На стадии инициализации всем весовым коэффициентам присваиваются небольшие слу­чай­ные значения.

2. На входы сети подается входной образ, и сигналы возбуждения распространяются по всем слоям согласно принципам классических прямопоточных (feedforward) сетей[1], то есть для каждого нейрона рассчитывается взвешенная сумма его входов, к которой затем применяется активационная (передаточная) функция нейрона, в результате чего получается его выходное значение yi(n), i=0...Mi-1, где Mi – число нейронов в слое i; n=0...N-1, а N – число слоев в сети.

3. На основании полученных выходных значений нейронов по формуле (1) или (2) произво­дится изменение весовых коэффициентов.

4. Цикл с шага 2, пока выходные значения сети не застабилизируются с заданной точнос­тью. Применение этого нового способа определения завершения обучения, отличного от исполь­зо­вавшегося для сети обратного распространения, обусловлено тем, что подстраиваемые зна­че­ния синапсов фактически не ограничены.

На втором шаге цикла попеременно предъявляются все образы из входного набора.

Другой алгоритм обучения без учителя – алгоритм Кохонена – предусматривает подстройку синапсов на основании их значений от предыдущей итерации.

(3)

Обучение сводится к минимизации разницы между входными сигналами нейрона, поступающими с выходов нейронов предыдущего слоя yi(n 1), и весовыми коэффициентами его синапсов.

Полный алгоритм обучения имеет примерно такую же структуру, как в методах Хебба, но на шаге 3 из всего слоя выбирается нейрон, значения синапсов которого максимально походят на входной образ, и подстройка весов по формуле (3) проводится только для него. Эта, так называемая, аккредитация может сопровождаться затормаживанием всех остальных нейронов слоя и введе­нием выбранного нейрона в насыщение. Выбор такого нейрона может осуществляться, например, расчетом скалярного произведения вектора весовых коэффициентов с вектором входных значений. Максимальное произведение дает выигравший нейрон.

Другой вариант – расчет расстояния между этими векторами в p-мерном пространстве, где p – размер векторов.

, (4)

где j – индекс нейрона в слое n, i – индекс суммирования по нейронам слоя (n-1), wij – вес синапса, соединяющего нейроны; выходы нейронов слоя (n-1) являются входными значениями для слоя n. Корень в формуле (4) брать не обязательно, так как важна лишь относительная оценка различных Dj.

В данном случае, "побеждает" нейрон с наименьшим расстоянием. Простейший вариант такого алгоритма заключается в торможении только что выигравшего нейрона.

При использовании обучения по алгоритму Кохонена существует практика нормализации входных образов, а так же – на стадии инициализации – и нормализации начальных значений весовых коэффициентов.

, (5)

где xi – i-ая компонента вектора входного образа или вектора весовых коэффициентов, а n – его размерность. Это позволяет сократить длительность процесса обучения.

Инициализация весовых коэффициентов случайными значениями может привести к тому, что различные классы, которым соответствуют плотно распределенные входные образы, сольются или, наоборот, раздробятся на дополнительные подклассы в случае близких образов одного и того же класса. Для избежания такой ситуации используется метод выпуклой комбинации[3]. Суть его сводится к тому, что входные нормализованные образы подвергаются преобразованию:

, (6)

где xi – i-ая компонента входного образа, n – общее число его компонент, (t) – коэффициент, изменяющийся в процессе обучения от нуля до единицы, в результате чего вначале на входы сети подаются практически одинаковые образы, а с течением времени они все больше сходятся к исходным. Весовые коэффициенты устанавливаются на шаге инициализации равными величине

, (7)

где n – размерность вектора весов для нейронов инициализируемого слоя.

На основе этого метода строятся нейронные сети особого типа – самоорганизующиеся структуры – self-organizing feature maps.
^ Нейронные сети Хопфилда и Хэмминга

Среди различных конфигураций искуственных нейронных сетей (НС) встречаются такие, при классификации которых по принципу обучения, строго говоря, не подходят ни обучение с учителем [1], ни обучение без учителя [2]. В таких сетях весовые коэффициенты синапсов рассчитываются только однажды перед началом функционирования сети на основе информации об обрабатываемых данных, и все обучение сети сводится именно к этому расчету. С одной стороны, предъявление априорной информации можно расценивать, как помощь учителя, но с другой – сеть фактически просто запоминает образцы до того, как на ее вход поступают реальные данные, и не может изменять свое поведение, поэтому говорить о звене обратной связи с "миром" (учителем) не приходится. Из сетей с подобной логикой работы наиболее известны сеть Хопфилда и сеть Хэмминга, которые обычно используются для организации ассоциативной памяти.

Структурная схема сети Хопфилда приведена на рис.1. Она состоит из единственного слоя нейронов, число которых является одновременно числом входов и выходов сети. Каждый нейрон связан синапсами со всеми остальными нейронами, а также имеет один входной синапс, через который осуществляется ввод сигнала. Выходные сигналы, как обычно, образуются на аксонах.



^ Рис.1 Структурная схема сети Хопфилда

Задача, решаемая данной сетью в качестве ассоциативной памяти, как правило, формулируется следующим образом. Известен некоторый набор двоичных сигналов (изображений, звуковых оцифровок, прочих данных, описывающих некие объекты или характеристики процессов), которые считаются образцовыми. Сеть должна уметь из произвольного неидеального сигнала, поданного на ее вход, выделить ("вспомнить" по частичной информации) соответствующий образец (если такой есть) или "дать заключение" о том, что входные данные не соответствуют ни одному из образцов. В общем случае, любой сигнал может быть описан вектором X = { xi: i=0...n-1}, n – число нейронов в сети и размерность входных и выходных векторов. Каждый элемент xi равен либо +1, либо -1. Обозначим вектор, описывающий k-ый образец, через Xk, а его компоненты, соответственно, – xik, k=0...m-1, m – число образцов. Когда сеть распознáет (или "вспомнит") какой-либо образец на основе предъявленных ей данных, ее выходы будут содержать именно его, то есть Y = Xk, где Y – вектор выходных значений сети: Y = { yi: i=0,...n-1}. В противном случае, выходной вектор не совпадет ни с одним образцовым.

Если, например, сигналы представляют собой некие изображения, то, отобразив в графи­ческом виде данные с выхода сети, можно будет увидеть картинку, полностью совпадающую с одной из образцовых (в случае успеха) или же "вольную импровизацию" сети (в случае неудачи).

На стадии инициализации сети весовые коэффициенты синапсов устанавливаются следующим образом [3][4]:

(1)

Здесь i и j – индексы, соответственно, предсинаптического и постсинаптического нейронов; xik, xjk – i-ый и j-ый элементы вектора k-ого образца.

Алгоритм функционирования сети следующий (p – номер итерации):

1. На входы сети подается неизвестный сигнал. Фактически его ввод осуществляется непо­сред­ственной установкой значений аксонов:

yi(0) = xi , i = 0...n-1, (2)

поэтому обозначение на схеме сети входных синапсов в явном виде носит чисто условный характер. Ноль в скобке справа от yi означает нулевую итерацию в цикле работы сети.

2. Рассчитывается новое состояние нейронов

, j=0...n-1 (3)

и новые значения аксонов

(4)




Рис.2 Активационные функции
где f – активационная функция в виде скачка, приве­денная на рис.2а.

3. Проверка, изменились ли выходные значения аксонов за последнюю итерацию. Если да – переход к пункту 2, иначе (если выходы застабилизировались) – конец. При этом выходной вектор представляет собой образец, наилучшим образом сочетающийся с входными данными.

Для сети Хопфилда число запоминаемых образов m не должно превышать величины, примерно равной 0.15•n. Кроме того, если два образа А и Б сильно похожи, они, возможно, будут вызывать у сети перекрестные ассоциации, то есть предъявление на входы сети вектора А приведет к появлению на ее выходах вектора Б и наоборот.



^ Рис.3 Структурная схема сети Хэмминга

Когда нет необходимости, чтобы сеть в явном виде выдавала образец, то есть достаточно, скажем, получать номер образца, ассоциативную память успешно реализует сеть Хэмминга. Данная сеть характеризуется, по сравнению с сетью Хопфилда, меньшими затратами на память и объемом вычислений, что становится очевидным из ее структуры (рис. 3).

Сеть состоит из двух слоев. Первый и второй слои имеют по m нейронов, где m – число образцов. Нейроны первого слоя имеют по n синапсов, соединенных со входами сети (образующими фиктивный нулевой слой). Нейроны второго слоя связаны между собой ингибиторными (отрицательными обратными) синаптическими связями. Единственный синапс с положительной обратной связью для каждого нейрона соединен с его же аксоном.

Идея работы сети состоит в нахождении расстояния Хэмминга от тестируемого образа до всех образцов. Расстоянием Хэмминга называется число отличающихся битов в двух бинарных векторах. Сеть должна выбрать образец с минимальным расстоянием Хэмминга до неизвестного входного сигнала, в результате чего будет активизирован только один выход сети, соответствующий этому образцу.

На стадии инициализации весовым коэффициентам первого слоя и порогу активационной функции присваиваются следующие значения:

, i=0...n-1, k=0...m-1 (5)

Tk = n / 2, k = 0...m-1 (6)

Здесь xik – i-ый элемент k-ого образца.

Весовые коэффициенты тормозящих синапсов во втором слое берут равными некоторой величине 0 <  < 1/m. Синапс нейрона, связанный с его же аксоном имеет вес +1.

Алгоритм функционирования сети Хэмминга следующий:

1. На входы сети подается неизвестный вектор X = {xi:i=0...n-1}, исходя из которого рассчитываются состояния нейронов первого слоя (верхний индекс в скобках указывает номер слоя):

, j=0...m-1 (7)

После этого полученными значениями инициализируются значения аксонов второго слоя:

yj(2) = yj(1), j = 0...m-1 (8)

2. Вычислить новые состояния нейронов второго слоя:

(9)

и значения их аксонов:

(10)

Активационная функция f имеет вид порога (рис. 2б), причем величина F должна быть достаточно большой, чтобы любые возможные значения аргумента не приводили к насыщению.

3. Проверить, изменились ли выходы нейронов второго слоя за последнюю итерацию. Если да – перейди к шагу 2. Иначе – конец.

* Иногда перцептроном называют любую НС слоистой структуры, однако здесь и далее под перцептроном понимается только сеть, состоящая из нейронов с активационными функциями единичного скачка (бинарная сеть).




Похожие:

Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconЕт ро л о г и я
Обяза- тельно укажите литературный источник, откуда взята исходная фор- мула, номер страницы или номер формулы. Тщательным образом...
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconРешение: Уравнение регрессии выражает усредненную зависимость выходной...
Рассчитать линейный коэффициент парной корреляции и определить коэффициент детерминации
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconПри обработке данных по адсорбции азота на адсорбенте при 77К с помощью...
Бэт, найдено, что тангенс угла наклона прямой составляет 1500, а отрезок, отсекаемый по оси ординат, равен 5 единицам. Адсорбция...
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconМажоризация Кривая Лоренца Макс Ото Лоренц (Lorenz M. O., 1876-1959)...
Лемма. Если функция не убывает, ф функция g выпукла по Шуру, то функция выпукла по Шуру
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconРешение Построим сначала график функции при неотрицательных значениях...
Надеюсь, вы внимательно изучили пункт 23 и понимаете, чем отличается функция вида от функции. Теперь разберем еще пару примеров,...
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconОперативная информация о государственной (итоговой) аттестации выпускников...
Гиа вы­пуск­ни­ков 9-х клас­сов в но­вой фор­ме. Ос­новным от­ли­чи­ем но­вой фор­мы ат­теста­ции от тра­дици­он­ных эк­за­менов...
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) icon6 eвх Рис. 1 Рис. 2 Перед расчетом в соответствии с вариантом задания...
Для заданной схемы электрической цепи, структура которой представлена на рис 1 или 2 и параметрами из таблиц 1, выполнить
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconВсе и каждый датчик такой системы имеет свой внесённый программно...
От контрольной панели в разные стороны тянутся шлейфы кабелей, причем к каждому из этих шлейфов присоединяют от 20 до 30 датчиков,...
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconРис. 1 Основные параметры резьбы
Рис. 6 – к определению основных характеристик зубчатых передач и построению эвольвентного профиля
Рис. 2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3) iconКонтрольная работа №3 по "Инженерной и компьютерной технике". Выполните...
Выполнить сборочный чертеж печатного узла на формате А3 (297х420мм) в трех проекциях согласно ескд по примеру рис. 18. 9 (задания...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
shkolnie.ru
Главная страница