Альтернативная физика более рациональна




Скачать 155.38 Kb.
НазваниеАльтернативная физика более рациональна
Дата публикации20.06.2013
Размер155.38 Kb.
ТипДокументы
shkolnie.ru > География > Документы
АЛЬТЕРНАТИВНАЯ ФИЗИКА БОЛЕЕ РАЦИОНАЛЬНА
На дворе уже давно время «Коперника» и

«Кеплера», а мы все живем по «Птолемею»
Вступление
Физические силы, их сущность и законы их действия начинают изучать ещё в средней школе, в разделе динамики. Основой фундамента динамики, как известно, являются три закона Ньютона. Однако с их разрешением у нас неприлично скромно. Можно сказать, даже огорчительно скромно.

Здесь могут сказать, что я, мягко выражаясь, не в себе. Мыслимо ли упрекать в подобном…(не будем уточнять кого)? Что ж, давайте разберёмся.
Первый закон динамики, Ньютона, в былые времена звучал предельно ясно. ^ Тело находится в покое или равномерном прямолинейном движении, если на него не действует никакая сила. То есть закон утверждает (и это лежало на поверхности, никаких интеллектуальных усилий не требуя), что в Природе существует явление, называемое инерцией. Способность тела, по каким-то причинам, не будем их доискиваться, сопротивляться его ускорению. И это сопротивление не прекращается пока тело, под действием силы, находится в состоянии ускоренного движения, положительного или отрицательного.
Сопротивление силе – это реакция на её проявление и тоже - сила. Значит, первый закон Ньютона на самом деле утверждает, что в Природе, под видом инерции, наряду со статической реакцией существует и реакция динамическая. Существует реально и проявляется. А поскольку при вращении тела эта динамическая реакция пытается его от центра вращения отдалить, то, по сути, является силой центробежной. Грузики механического регулятора скорости, при её увеличении, ведь действительно расходятся! Однако теорией существование центробежной силы не признается. То есть, такой силы в Природе якобы нет, вообще.

Почему же уважаемыми представителями академической науки существование реальной центробежной силы отрицается, если её существование обусловлено первым законом динамики и подтверждается практикой?

Почему, в связи с этим, процесс отрицания иных сил, кроме силы центральной, действующих на движущееся небесное тело, начинается уже изначально, ещё в школе, а потом и в ВУЗе.

Кому и зачем это нужно? Оказывается, есть, кому и есть зачем! Это нужно тем, кто занимается вопросами движения небесных тел, чтобы скрыть нерешённость силовых проблем небесной механики, которые являются следствием незавершённости кинематики материальной точки.
Объяснение физики небесного движения, чтобы скрыть действие там сил, пока не имеющих объяснения, начинается с вращения груза на верёвке. Где неизменяемость связи вращающегося тела с центром вращения центробежную силу, практически, никак выявить не позволяет. И, за счёт неизменяемости связи, демонстрируется только действие натяжения самой верёвки по удержанию груза, имитирующей центральную силу. Потом, заостряя внимание, что в этом случае действует только сила центральная, производится переход к движению спутника Земли, где действие верёвки заменяет сила гравитации. Которая затем и представляется как единственная сила, действующая в небесной механике. На самом деле она там не единственная. Есть там и вторая сила - центробежная и третья сила – касательная - движущая, и четвёртая сила – касательная – тормозящая, в условиях реальности. Но пока кинематика остаётся незавершённой, разрешить силовые проблемы небесной механики просто невозможно. Завершить же кинематику нынешняя физика не способна. Поэтому и применяются всевозможные способы, демонстрирующие, что проблем в небесной механике вроде бы нет.

Сегодня маскировка сил, действующих в небесной механике, усилена, еще более. Истинное содержание первого закона динамики, мало сказать, теперь оказалось второстепенным, оно совершенно уничтожено физически, введённым в физику принципом релятивистской относительности. И теперь формулировка закона выглядит так:

«Существуют системы отсчёта, называемые инерциальными, относительно которых свободные тела движутся равномерно и прямолинейно».

Сказано, что существуют, а где они находятся в действительности и, что собой представляют, не сказано. И видно потому, что в Природе их не существует! И существуют они только умозрительно, в связи с искусственно введённым в физику принципом релятивистской относительности, порождённым СТО, ею (существующей физикой) «удочерённой».
Теперь явление Природы, получившее название инерция, вроде бы уже и не обусловлено законом Природы, а существует просто так, само по себе. И из такой формулировки уже никак нельзя понять, что в Природе существует и реакция динамическая. А, тем более что она же является и силой центробежной. К тому же, в том же школьном учебнике, но уже при описании второго закона, делая ставку на то, чтобы силу центробежную из физики убрать окончательно, сказано буквально следующее:

«В первом законе утверждается существование инерциальных систем отсчёта».

Совсем не смешно! Какой сногсшибательный поворот!!! Умозрительное, теперь переведено в ранг полноправного утвердителя, утверждая самое себя?!
Однако это, по сути дела, всё же наносное «производное». Реальной «функцией» первого закона, непременным образом, остаётся существование в Природе явления инерции. А это стало основой для дальнейших выводов и новых изысканий в области кинематики и гравитационной динамики, что успешно выполнено и обнародовано, несмотря на, казалось непреодолимое, противодействие «уважаемых» астрономов.
Итак, при помощи не сложных рассуждений, используя первый закон Ньютона и верно его, понимая, мы пришли к выводу, что при вращательном движении центробежная сила всё-таки существует и действует, в рамках его третьего закона. И только поэтому Природа демонстрирует нам, сегодня удивительное зрелище невесомости, при нахождении космического корабля на орбите, движущегося вокруг Земли. Обеспечивает это состояние и космическому кораблю, и всему тому, что находится в нём, равенство сил, центральной – гравитационной и центробежной – инерционной. При отсутствии центральной силы – гравитационной, например, на карусели, отсутствует и невесомость. И тело, находящееся там, в незакреплённом положении, в этом случае, отклоняясь во внешнюю сторону, в очередной раз, ясно показывает, что центробежная сила реально существует и действует.
^ Кинематика рациональная
1. К вопросу движения и, в частности, небесного

.

Существующая кинематика материальной точки не имеет завершенного вида. Её математический анализ, ранее выполненный в условиях недостатка знаний, сегодня не является корректным. Математически некорректно и геометрическое построение для определения направленности центростремительного ускорения.
Начала механики, как считают, были завершены еще в 17-ом веке. Однако немало вопросов в области движения и сегодня остается без ответа. Например, совершенно не ясно, почему движение космических тел происходит именно по эллиптическим орбитам. Задача двух тел Ньютона только геометрическое отображение реалий в небесной механике, никакой физики не объясняющее. Не ясна причина и вечности небесного движения. Исчерпывающий ответ, на эти и другие вопросы, могла бы дать гравитационная динамика. Но таковой, в существующей физике, нет. Она не существует, потому, что нет фундамента для ее возникновения – рациональной (завершенной) кинематики.

То, что тело может двигаться по кругу, ныне приписывается действию только центральной силы. Говорят: тело двигалось бы прямо, но центральная сила, искривляя траекторию, заставляет его двигаться по кругу. А за счет чего, собственно, тело должно было бы двигаться прямо? Если, как нас заверяют, на него, кроме центральной силы - статической, никакая иная сила не действует? На точки обода велосипедного колеса действуют центральные силы натяжения спиц. Однако колесо приводится во вращение не силами натяжения спиц. Поэтому утверждение, что равномерное движение по окружности происходит за счёт действия только центральной силы неверно во всех отношениях.

Во-первых, реальное движение по окружности не может быть равномерным, если не оговорить, что его равномерность следует понимать, как «постоянное по величине», поддерживаемое какой-то силой. Ведь это движение происходит с затуханием скорости, ввиду энергетических потерь и с угловым ускорением, так как изменяется направление его скорости.

Во-вторых, движение тела вкруговую, под действием силы гравитации, а она в небесной механике, как причина движения, единственная, не может быть равномерным по природе. Это движение непременно происходит по эллиптической траектории, которое равномерным назвать никак нельзя.

Чтобы, в реальных условиях, тело двигалось вкруговую, на него, и это очевидно, должны действовать четыре силы: центральная и касательная (движущие), центробежная и тормозящая (реактивные). И, если по окружности и равномерно, то непременно, чтобы все они были равными, что будет обеспечивать условие выполнения законов динамики Ньютона, и движения тела по инерции, не требуя привлечения каких-то инерциальных систем. А если так, то теория движения, разумеется, наиболее общая, коей является теория криволинейного движения, должна показывать наличие у тел, движущихся по кривой, двух, реально существующих, при круговом движении равных по величине, ускорений: центрального и касательного, причины движения, обусловленной внешней силой. И, если речь о небесной механике, то - гравитацией. В математическом же выражении абсолютного ускорения, существующей кинематики материальной точки, последнее (касательное ускорение) не значится. Вообще-то оно есть. В виде второго слагаемого, в формуле, фиксируется. Но, как бы довеском к центральному ускорению. И только фиксируется, поскольку представлено выражением лишенным физического смысла (1). К тому же совершенно не ясно, какой именно вид движения, представленный символом V, в данном выражении следует полагать: прямолинейный (ds/dt) или криволинейный (Rdφ/dt)?
V2 dV

W = n — + τ —— . (1)

R d t
Если учитывать, что анализ движения в общем виде - это анализ нелинейного (криволинейного) движения, которое в пределе суть движение по дуге (вращательное), то под движением, представленным символом V, в формуле (1), следует понимать движение криволинейное. Но поскольку в анализ кинематики точки заложено выражение закона линейного движения s = s(t), то это, движение следует считать прямолинейным?!

Непременным условием вращательного движения тела является наличие и действие силы центральной. Действует в этом случае на тело и сила реакции, равная силе центральной, но направленная противоположно. Элемент связи тела с центром вращения, например, верёвка, при этом, испытывает силу её разрывающую. На практике сила реакции получила название центробежной, хотя теорией и не признаётся. Аргументом её противников является то, что при обрыве центральной связи тело продолжает движение не в радиальном направлении от центра вращения, а по касательной. Но это только подтверждает, что центробежная сила – это сила динамической реакции. Поскольку при исчезновении силы её породившей (натяжения верёвки) мгновенно прекращается и действие силы реакции, ею порождённой. И остаётся действующей только сила касательная.

Для инженеров центробежная сила является головной болью. При расчете на прочность конструкций с вращающимися массами, полную центробежную силу определяют через абсолютное ускорение, используя существующую формулу (1). Однако после расчета, запас прочности крепления, вращающейся массы, оказывается недостаточным, и коррекцию расчета приходиться производить практикой. Причиной невозможности выполнить точный расчет ныне считают неподдающиеся учету дефекты в материале. Но это не совсем так. Действительная причина - ущербность формулы абсолютного ускорения, ее незавершенность, о чем было сказано выше.
«Ускорение тела, равномерно движущегося по окружности, – говорится в одном из школьных учебников, - в любой его точке центростремительное, т. е. направлено по радиусу окружности к ее центру». Утверждение иллюстрируется известным геометрическим построением (рис. 1), которое приводится во всех учебниках физики, для школ и вузов, и сказанное якобы подтверждает.
A L

V0

Б V
r V V

Рис. 1.
Направленность ускорения, в построении, определяется направленностью векторной разности ^ V, получаемой путем переноса вектора скорости V параллельно самому себе, из последующей точки «Б» в предыдущую точку «А». Однако вектор скорости, в построении, особый – связанный. Его полюс жестко сцеплен с движущейся материальной точкой. Перенос связанного вектора параллельно самому себе, и вообще любой его перенос, путём отрыва от связанной с ним точки, исключен. Это действие математически не корректно. И векторную разность таким способом, не нарушая правил математики, получить невозможно.

Полюса векторов V0 и V (рис. 1) жестко сцеплены с точками «А» и «Б» – точками пребывания движущегося тела. Значит, при переносе вектора V, вместе с ним должна будет двигаться по дуге, в обратном направлении, и точка его приложения, сцепленная с ним, поворачивая переносимый вектор. Когда полюса векторов совпадут, совпадут и сами векторы. Разность между ними исчезнет.

Перечисленные выше противоречия в существующей кинематике: неопределенность сущности скорости V, некорректность графического определения направления центростремительного ускорения и ущербная незавершенность формулы (1), делают её практически непригодной. Требуется серьезная теоретическая доработка
Для выполнения нового анализа кинематики материальной точки принимаем следующую терминологию.

Выражение dS/dt (S – путь по прямой; t – время) - линейный закон движения. Соответственно, движение – прямолинейное, скорость - прямолинейная.

Выражение Rdφ/dt (R – радиус ; φ – угол вращения радиуса; t – время) – нелинейный закон движения. Соответственно, движение нелинейное, иначе - криволинейное (в пределе движение по дуге – вращательное). Скорость – нелинейная и, будучи представленная произведением угловой частоты - ω на величину радиуса вращения - R, будет скоростью угловой, иначе – криволинейной, по направленности обусловленной единичным вектором - ωо, которая есть скорость суммы двух её составляющих – касательной скорости - Vτ и нормальной - Vn .

^ 2. Причина ущербности существующей формулы

абсолютного ускорения
Исследование движения в общем виде (в криволинейной его форме), в существующей кинематике материальной точки, построено на известном математическом анализе производной вектор-функции r(t) [1, гл.Х, §4], где изменение пути по времени принято в линейной форме. И криволинейная форма движения исследуется методом движения прямолинейного. В общем, в исследовании, криволинейное движение подменяется движением прямолинейным, т. е. будто движение происходит не по кривой траектории, а по прямой линии. Корректно ли подобное?

В существующей физике подобная замена полагается допустимой. Основано это допущение на принципе количественного приближения - арифметического. Говорят, хотя путь вдоль дуги и длиннее, нежели вдоль прямой, ее ограничивающей, все же в пределе можно считать хорду и дугу соизмеримыми. И в анализе(?) движения, с допустимым приближением, вполне возможно принять их равными, заменив дугу хордой. Этот аргумент сегодня считается верным обоснованием существующего метода математического анализа кинематики. Однако в этом случае допускаются две некорректности.

Во-первых, в данной ситуации, требуется не задачу решить, чтобы определить величину скорости, а выполнить математический анализ, чтобы получить уравнение, описывающее физическую сущность проблемы. И арифметическое, тем более, мысленное приближение здесь недопустимо.

Во-вторых, дуга, от прямой линии отличается не только своей величиной, но и физически, т. е. качественно. Прямая линия движения формируется только за счет одной силы, действующей на движущееся тело, в направлении его движения. Кривая же – за счет двух сил. Одна из них действует в прямом направлении (по касательной). Другая - в направлении перпендикулярном прямому направлению, по нормали к касательной. Именно этот факт, наличие двух сил, участвующих в формировании уравнения движения по криволинейной траектории, в существующей кинематике и не учитывается!

Считается, что сила в небесном движении одна, поскольку касательная сила не выявлена (нет гравитационной динамики). И движется тело вроде бы только по касательной (движение тела в сторону центра, при вращении, почему-то не учитывается, хотя и говорится, что оно вроде бы «падает»). Таким образом, в этом случае учитывается только по одной составляющей общих факторов – силы и скорости, действующих на небесное тело. Вторые составляющие общих факторов - скорость центральная («падение» тела) и сила касательная (порождённая гравитационной динамикой) не признаются и не учитываются. Те же, признанные и учитываемые, сила и скорость, разнородные части целых, разнонаправлены!. Поэтому ошибочно считается, что в направленности движения тела и действии силы совпадения нет?! Что утверждается повсеместно и даже в школьном учебнике.

Вращательное (криволинейное) движение остается таковым, а, значит, переменным, даже в случае постоянства модуля скорости. Потому, что изменяется направление ее вектора. В этом случае, даже при бесконечно малом векторе перемещения и, следовательно, исчезающе малом повороте вектора скорости, угол изменения его направленности все же не равен нулю. Закон такого движения качественно иной, чем при условии равенства этого угла нулю, когда движение прямолинейно. Поэтому простая замена, в анализе, выражения одного закона движения другим(!!!) уже грубая, не допустимая, ошибка. Тем более что эта замена производится путем арифметического приближения
^ 3. Нелинейные движения
Рассматривая движение по кривой, мы пользуемся выражением ωr – произведением двух физических величин, представляющих скорость этого движения. И в зависимости от условия, заданного для радиус-вектора, можно получить описание трёх вариантов движения, которые будут представлять, соответственно, три вида кривых.
^ 1. Величина радиус-вектора неизменна. В этом случае радиус-вектор, лишившись потенции изменения своей величины, теряет векторность и становится скаляром – радиусом вращения. Кривая, изображающая движение, явит окружность. Движение будет вращательным - Vв.= ωR, и вектор скорости этого движения расположится в плоскости вращения. Это исходное выражение для определения ускорения в заданной точке, при криволинейном движении.
^ 2. Величина радиус-вектора изменяется: или уменьшается, или увеличивается. В этом случае выражение скорости будет состоять из произведения двух векторных величин - Vс .= ωr. Кривая будет спираль - или нисходящая, или восходящая. Направление вектора скорости совпадёт с осью вращения, в направлении в одну или другую сторону, в зависимости от направления изменения величины радиус-вектора. Это исходное выражение для описания процессов при ускорении и торможении частиц в микромире.
^ 3. Величина радиус-вектора совершает периодические колебания, увеличиваясь и уменьшаясь. В этом случае выражение скорости будет представлять колебательный процесс - Vс .= ωr). Кривая изображающая такое движение будет сложной, состоящей из спирального движения, которое изменяется по закону синус-косинуса. Это исходное выражение для описания колебательного процесса при распространении электромагнитных волн.
^ 4. Рациональная кинематика материальной точки
Зададим условие движения в параметрическом виде [2]. Обозначим путь при прямолинейном движении через S. Путь при криволинейном движении через L. В первом случае закон движения выразится простой функцией, где путь будет функцией времени.
S = S (t) . (2)
Скорость при этом, первая производная от (2), будет прямолинейная.
Vл. = dS / dt. (3)
Во втором случае уравнение движения выразится функцией сложной. Путь по кривой, в пределе по дуге, которая представляется произведением L = Rφ, в первую очередь, будет функцией угла φ, поворота радиуса.
L = L (φ). (4)
Последний (угол), в свою очередь, будет функцией времени.
φ = φ (t) (5)
Таким образом, закон криволинейного движения, в развернутом виде, будет:
L = L [φ(t)]. (6)
Скорость при этом, первая производная от (6), будет угловой - скоростью вращения искомой точки.

Vвр.= Rdφ /dt = ωR (7)
Значит, упрощение, принятое в существующей кинематике, о котором говорилось выше, заключается в том, что вместо выражения закона движения (6), в основу анализа положено выражение закона движения (2). Спору нет, подобная замена значительно упрощает математический аппарат анализа, но, будучи заменой, в физическом отношении, совершенно не адекватной, приводит, в конечном счёте, к серьезной ошибке.

Путь к устранению ошибки в теории движения очевиден. Отказавшись от некорректного математического упрощения, в основу анализа следует положить именно то выражение закона движения, которое соответствует исследуемому (6). Практически это будет выглядеть следующим образом. В качестве выражения закона движения материальной точки, которое соответствует данному принципу исследования, принимаем выражение закона криволинейного движения, в векторной форме, заданное естественным способом [2, гл.1,(1.26)].

r = r(L), (8)
где, согласно (6), L = L[φ(t)].
Тогда (8) в развернутом виде, будет:
r = r{L [φ (t)]} . (9)
Векторы скорости и ускорения, точки движущейся по кривой, можно получить путем однократного и двукратного дифференцирования выражения (9), соответственно. Математический аппарат анализа при этом несколько усложняется, но зато истинность результата будет вне сомнения.
Вектор скорости:

dr dL dφ

Vвр.= r´{L[φ(t)]} = — . —– . —– = ωоRω, (10)

dL dφ dt
где ωо = n + τ - единичный вектор той же величины, поэтому:
Vвр. = ωоRω = Vn + Vτ (11)
Вектор ускорения (без вывода):
Wрац. = r´´{L[φ(t)]} = V´вр.(t) = nω2 R + τω2 R. (12)
Как видно из (12), выражение вектора касательной составляющей абсолютного ускорения в действительности имеет реальное значение и по модулю равно нормальной его составляющей (полный вывод формулы (12) в Приложении [4]).
Вывод

Факт существования реального касательного ускорения во вращательном движении, в частности в небесной механике, кроме центральной силы, утверждает наличие силы касательной и реальное её проявление. Что позволило создать новый раздел физики – «Начала гравитационной динамики» [4,5].
Биюлиографи
1. Пискунов Н. С. Дифференциальное и интегральное исчисление для вузов. Т. 1. – М.:

«Наука», 1978.

2. Ольховский И. И. Курс теоретической механики для физиков. – М.: «Московский университет», 1974.

3. Зорич В. А. Математический анализ. Ч 2. – М.: «Наука», 1981.

4. Сатаева О, Афанасьев Т. КТО МЫ И ОТКУДА? /О. Сатаева, Т. Афанасьев. //Размышления, подкреплённые материалом из монографии «Мы не одиноки во Вселенной», - 1-е изд. – Иркутск: ИВВАИУ (ВИ), 2007. – 208 с.

5. Гуртовой Т. А.. Мы не одиноки во Вселенной.– Иркутск, 1998

Похожие:

Альтернативная физика более рациональна iconПрограмма включает в себя следующее
Европейских университетах. Часто встречаются такие названия курсов как физика, астрономия, теоретическая физика, прикладная физика,...
Альтернативная физика более рациональна iconЗаконы сохранения в механике
Ы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика, квантовая физика (атомная физика и физика...
Альтернативная физика более рациональна iconЗао «Информационные технологии» модернизация одного критерия абсолютной устойчивости
Показано, что полученный критерий является более сильным, чем критерий В. М. Попова. Приводится альтернативная формулировка критерия...
Альтернативная физика более рациональна iconФизика 7-9 классы
Что изучает физика. Физические явления. Наблюдения, опыты, измерения. Физика и техника
Альтернативная физика более рациональна iconРабочая программа по физике разработана на основе примерной программы...
Базовый уровень. Автор программы Г. Я. Мякишев. Разделы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика,...
Альтернативная физика более рациональна iconРабочая программа по физике разработана на основе примерной программы...
Базовый уровень. Автор программы Г. Я. Мякишев. Разделы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика,...
Альтернативная физика более рациональна iconОсновная образовательная программа высшего профессионального образования...
Список профилей подготовки бакалавров по направлению физика Фундаментальная физика
Альтернативная физика более рациональна icon01. 04. 14 [Теплофизика и теоретическая теплотехника]
В основу настоящей программы положены следующие разделы физики: термодинамика и статистическая физика; теория неравновесных процессов;...
Альтернативная физика более рациональна iconПеречень электронных дисков, содержащихся в фонде библиотеки гбоу сош с. Сухая Вязовка
Живая физика. Живая геометрия; Готовимся к егэ. Физика; Готовимся к егэ. Математика; Физика. 7 9 класс ч. 1
Альтернативная физика более рациональна iconЦфа общая физика Иван Иванович Николаев цфа
За точность и верность расписания, а тем более имён преподавателей не ручаюсь. По поводу замечаний
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
shkolnie.ru
Главная страница